Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Graph Model ; 125: 108611, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37660614

RESUMO

Traditionally, nanocones as a drug delivery material allow controlled drug delivery close to the target area while reducing the toxicity and generic accumulation associated with traditional intravenous injection methods. In the current study, density functional theory (DFT) is employed to investigate the therapeutic potential of carbon nanocone oxide (ONC) as a carrier with zidovudine drug for the treatment of human immunodeficiency virus (HIV). The electronic ground state and excited state were studied to evaluate the drug carrier potential of ONC and Zidovudine-ONC complex. The Frontier Molecular Orbitals (FMOs) and Molecular Electrostatic Potential (MEPs) revealed that the ONC carrier acts as a donor and zidovudine as an acceptor. The FMOs confirmed the interaction between drug and carrier stabilization energy by calculating chemical hardness, material softness, electronegativity, Ionization energy and electron affinity. The natural bond analysis (NBO), non-covalent interaction (NCI) and electron localization function (ELF) revealed the charge transfer between zidovudine and ONC. The density of state (DOS) and Charge Deposition analysis (CDA) provided the charge transfer. To study the excited state of zidovudine, transition density matrix (TDM), UV(Ultra-visible), IR (infrared), Raman, and NMR (Nuclear Magnetic Resonance) spectra of ONC and zidovudine-ONC complex have been plotted. The spectra showed a significant red shift in the zidovudine-ONC complex. Photoinduced electron studies (PET) showed fluorescence quenching because of the interaction between the drug and the carrier and provided a graphical explanation of the distinct excited state. All the results show that the ONC carrier has therapeutic potential as a zidovudine carrier for the treatment of Human Immunodeficiency Virus (HIV).


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Humanos , Zidovudina , Portadores de Fármacos , Óxidos
2.
ACS Omega ; 8(22): 19486-19493, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37305307

RESUMO

In this study, a tertiary composite of graphitic carbon nitride (GCN) with copper and manganese is utilized for photocatalytic degradation to add to efforts for tackling environmental pollution problems. The photocatalytic efficiency of GCN is enhanced with the doping of copper and manganese. This composite is prepared using melamine thermal self-condensation. The formation and characteristics of the composite Cu-Mn-doped GCN are affirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet (UV), and Fourier transform infrared spectroscopy (FTIR). This composite has been used for the degradation of an organic dye (methylene blue (MB)) from water at neutral conditions (pH = 7) of the solution. The percentage photocatalytic degradation of MB by Cu-Mn-doped GCN is higher than that of Cu-GCN and GCN. The prepared composite enhances the degradation of methylene blue (MB) from 5 to 98% under sunlight. The photocatalytic degradation is enhanced owing to the reduction of hole-electron recombination in GCN, enhanced surface area, and extended sunlight utilization by the doped Cu and Mn.

3.
J Mol Graph Model ; 123: 108517, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37235904

RESUMO

This study aimed to explore the potential of Host-Guest coupling with Nanocarrier graphyne (GPH) to enhance the bioavailability of the drug 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (LUM) for brain tumor therapy. The electronic, geometric, and excited-state properties of GPH, LUM, and the graphyne@1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea-complex (GPH@LUM-complex) were studied using DFT B3LYP/6-31G** level of theory. The results showed that the GPH@LUM-complex was stable with negative adsorption energy (-0.20 eV), and there was good interaction between GPH and LUM in the solvent phase. The weak interaction forces between the two indicated an easy release of the drug at the target site. The Frontier Molecular Orbitals (FMO), Charge Density Analysis (CDA), and Natural Bond Orbital (NBO) analysis supported LUM to GPH charge transfer during complex formation, and the Reduced Density Gradient (RDG) isosurfaces identified steric effects and non-bonded interactions. UV-visible examination showed the potential of the GPH@LUM-complex as a drug carrier with a blue shift of 23 nm wavelength in the electronic spectra. The PET process analysis revealed a fluorescence-quenching process, facilitating systematic drug delivery. The study concluded that GPH had potential as a carrier for delivering LUM, and different 2D nanomaterials could be explored for drug delivery applications. The theoretical study's findings may motivate researchers to investigate the practical applications of GPH@LUM-complex in oncology.


Assuntos
Neoplasias Encefálicas , Compostos de Nitrosoureia , Humanos
4.
J Mol Graph Model ; 114: 108204, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525190

RESUMO

The nonlinear optical (NLO) properties of gold (Au) doped graphyne (GY) complexes are the subject of this quantum mechanical investigation. Detailed profiling of GY@Aucenter, GY@Auside, GY@2Auabove,GY@2Auperpendicular, and GY@3Aucenter is accomplished at CAM-B3LYP/LANL2DZ. The differential influence of various GY based complexes on molecular geometry, vertical ionization energy (VIE), interaction energy (Eint), frontier molecular orbitals (FMOs), density of states (DOS), absorption maximum (λmax), molecular electrostatic potential (MEP), electron density distribution map (EDDM), transition density matrix (TDM), dipole moment (µ) and non-linear optical (NLO) properties have been investigated. Non-covalent interaction (NCI) analysis has been done to explore the sort of interactions in designed complexes. The vibrational frequencies are probed via infrared (IR) analysis. Doping tactics in all complexes dramatically changed charge carrier properties, such as shrinking band gap (Eg) and increasing λmax in the range of 3.97-5.58 eV and 288-562 nm respectively, compared to pure GY with 5.78 eV Eg and 265 nm λmax. When compared to GY (αO = 281.54 andßO = 0.21 au), GY@3Aucenter exhibited a significant increase in static mean polarizability (αO = 415 au) and the mean first hyperpolarizability (ßo = 3652 au) attributable to its lowest excitation energy (ΔE). GY doping has been discovered to be advantageous for designing potential nanoscale devices by focusing on the symphony between small Au clusters and GY and their impacts on NLO aspects.


Assuntos
Ouro , Vibração , Conformação Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática
5.
RSC Adv ; 12(10): 6336-6346, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35424570

RESUMO

In the current study, the drug carrier efficiency of graphyne (GRP) for the transfer of the hesperetin (HPT) drug is evaluated for the first time. The GRP efficacy as a carrier is investigated using the density functional theory (DFT) technique to calculate various physiochemical characteristics such as dipole moment, bandgap, and chemical reactivity-descriptors for HPT, GRP and HPT@GRP complex. The non-covalent-interaction (NCI) plot indicated that GRP and HPT have weak interaction force, which is fundamental for the drug's noticeable offloading from the GRP carrier at its target location. According to frontier molecular orbital analysis, the highest occupied molecular orbital (HOMO) of HPT distributes the charge to the GRP, the lowest unoccupied molecular orbital (LUMO) during excitation. Charge transfer is further supported by charge-decomposition-analysis, which interprets the extensive overlap between HPT and GRP orbitals. In the case of the gas phase, the λ max of the HPT@GRP-complex is redshifted by 9 nm from GRP. In the solvent phase, the λ max value is also redshifted. These theoretically calculated spectra also match experimentally observed spectra rather well. The PET (photoinduced electron-transfer) method and electron-hole theory were used for the graphical explication of distinct excited states. The photoinduced electron transfer (PET) mechanism interprets fluorescence dimming because of interaction. Furthermore, GRP with cationic (+1) and anionic (-1) charge states (GRP+1/-1) showed minor structural disfigurement and formed stable HPT complexes. In the current study, HRP is loading and unloading on GRP very effectively, that can potentially be used in the oncology field. Due to this theoretical study, researchers will be interested in looking at other 2D nanomaterials for drug delivery applications.

6.
RSC Adv ; 12(9): 5466-5482, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35425557

RESUMO

This research study addresses the computational simulations of optical and nonlinear optical (NLO) characteristics of silver (Ag) cluster doped graphyne (GY) complexes. By precisely following DFT and TD-DFT hypothetical computations, in-depth characterization of GY@Agcenter, GY@Agside, GY@2Agperpendicular, GY@2Agabove, and GY@3Agcenter is accomplished using CAM-B3LYP/LANL2DZ while the CAM-B3LYP/mixed basis set is used for study of 2GY@Agcenter, 2GY@Agside, 2GY@2Agperpendicular, 2GY@2Agabove, and 2GY@3Agcenter. The effects of various graphyne surface based complexes on hyperpolarizabilities, frontier molecular orbitals (FMOs), density of states (DOS), absorption maximum (λ max), binding energy (E b), dipole moment (µ), electron density distribution map (EDDM), transition density matrix (TDM), electrostatic potential (ESP), vertical ionization energy (E VI) and electrical conductivity (σ) have been investigated. Infrared (IR), non-covalent interaction (NCI) analysis accompanied by isosurface are performed to study the vibrational frequencies and type of interaction. Doping strategies in all complexes impressively reformed charge transfer characteristics such as narrowing band gap (E g) in the range of 2.58-4.73 eV and enhanced λ max lying in the range of 368-536 nm as compared to pure GY with 5.78 eV E g and 265 nm λ max for (GY@Agcenter-GY@3Agcenter). In the case of (2GY@Agcenter-2GY@3Agcenter), when compared to 2GY with 5.58 eV E g and 275 nm absorption, maximum doping techniques have more effectively modified λ max in the region of 400-548 nm and E g, which is in the order of 2.55-4.62 eV. GY@3Agcenter and 2GY@3Agcenter reflected a noteworthy increment in linear polarizability α O (436.90 au) and (586 au) and the first hyperpolarizability ß O (5048.77 au) and (17 270 au) because of their lowest excitation energy (ΔE) when studied in comparison with GY (α O = 281.54 and ß O = 0.21 au) and 2GY surface (α O = 416 and ß O = 0.06 au). Focusing on harmony between the tiny Ag clusters and graphyne surface as well as their influences on NLO properties, graphyne doping using its two-unit cells (2GY) is found to be expedient for the development of future nanoscale devices.

7.
J Mol Graph Model ; 106: 107918, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33887524

RESUMO

Four new Donor-Acceptor (D-A) type oligothiophenes based structures (C1-C4) were designed by substituting different acceptors moieties around tetrahedral silicon core to simulate their photovoltaic properties. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) quantum analysis were carried out to reconnoiter various parameters of solar cells. A comparative analysis has conducted between designed structures and reference molecule R to conclude our simulated results. Among all the structures, C2 has displayed highest absorption values (380 nm) with red shift and minimum band gap (ΔH-L) of 4.11 eV in dichloromethane at DFT-CAM-B3LYP/6-31G (d,p) using IEFPCM model. The C2 has also shown the lowest values of electron reorganization energy (λe = 0.018eV) and hole reorganization energy (λh = 0.015eV) therefore, could be suggested for use in organic solar cells because of its most noteworthy charge carrier mobilities. Again, C2 has the different trend in TDM graph because the electron density is present in the lower right part of core unit and in the acceptor moiety due to high electron affinities of end capped acceptor having cyanide groups.


Assuntos
Elétrons , Silanos , Teoria da Densidade Funcional , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...